07-05-2012 Solution
Functional Analysis - M.Math. I Year - Final Exam

1. Let (H,< .,.>) be a Hilbert space. Let A € B(H). Prove that:

a) KerA* = (rangeA)*.

b) Ker(A*A) = KerA.

c) If dim H < oo, then A, A*A, V/A*A have the same rank, i.e., the dimensions
of their ranges are the same.

d) (KerA)* = the closure of range A* = rangeA*.

Solution:

(a) Note £ € KerA* & A =0 < A¢,n>=0,Yn € H &< {, An >=0,Vn €
H & € € (ranA)* .

(b) Obviously KerA C KerA*A. By 1(a), KerA*A = Ran(A*A)t. Thus, £ €
KerA*A implies < &, A*An >= 0,Vn € H from which it follows that A¢ = 0
so that £ € KerA.

(c¢) Use Rank-Nullity theorem to conclude that dim(KerA*A) + dim(RanA*A) =
dim(H) = dim(KerA) + dim(RanA) so that rank of A*A equals rank of A.
Let T = VA*A. Again note that KerT C KerA*A obviously. Now £ €
KerA*A = T =0 =< T%,£ >=< TE,TE >= 0 and hence £ € KerT.

(d) For any € € H,n € KerA,< A*¢,n >= 0 so that RanA* C Ker At which in
turn implies RanA* C KerA*. The reverse inclusion follows from 1(a).

U
2. Let (H,< .,.>) be a Hilbert space. Let A € B(H).

a) Show that if A is normal then spr(A4) = ||A]|.
b) If A is self adjoint and A™ = 0 for some n > 1, then A = 0.

Solution:

(a) If a is a normal element of a unital C*-algebra A, then recall that there is a
unique unital x-isomorphism ¢ : C(Spr(a)) — A (known as functional calculus
at a) such that ¢(z) = a where z is the inclusion map of Spr(a) in C and
moreover, ¢ is isometric and image of ¢ is the C*-subalgebra of A generated
by 1 and a. From this we immediately conclude that if A € B(H) is normal,
then || A|| = Spr(A).



(b)

|Al| = spr(A) = limy, 0 ||A™]| = 0.

O
3. Show that a Banach space X is reflexive iff its dual X* is reflexive.
Solution: See Functional Analysis, S. Kesavan corollary 5.3.3, page-146 O
4. a) Show that every Banach space X is isometrically isomorphic to a closed linear
subspace of C(F) where E is a compact Hausdorff space.

b) Let X = (0, 1],(continuous real valued functions on [0, 1]) with the uni-
form norm ||z|| = supo<i<i|z(t)|. Its dual X* may be identified as X* =
NBV[0,1] := {g : [0,1] — R,g(0) = 0,¢ of bounded variation and right
continuous on [0, 1]}, with the total variation norm. Show that if ¢ € X* and
g(x) > 0,2 € X, then g is given by a non-decreasing function on [0, 1].

c) If {pn : n > 1} is a sequence of probability measures on [0, 1], show tht there-
exists a subsequence {n,} C {n} and a probability measure p on [0,1] such
that

1 1
| 0 — [ s, w1 € cp.l
0 0
Solution:

(a)

Suppose that X is a Banach space and let £ = (X*);, the closed unit ball of X*
and by the Banach-Alaoglu theorem, E is compact in weak* topology. Define
amap f: X — C(E) by (a)(f) = f(a) for a € X, f € E. Linearity of
is obvious. Further for a € X, ||8(a)|lcc = Supser|B(a)(f)| = Suprer|f(a)| =
||a||, showing that [ is isometry. Hence the proof.

See B.V.Limaye Functional Analysis, Theorem 14.5, page-245.

For each n, define ¢, : C[0,1] — C by ¢,(f) = [ fdu,. Note that |¢,(f)] <
| fllo so that each ¢, € C[0,1]*. By an appeal to the uniform bounded-
ness principle we see that {¢,} is a bounded sequence in C[0,1]*. We re-
call that every bounded sequence in the dual of a seperable Banach space
has a weak® convergent subsequence. Consequently, {¢,} has a weak® con-
vergent subsequence, say, {¢,, } and let ¢,, — ¢ € C[0,1]* in weak® topol-
ogy. Thus ¢(f) = limy—eo [ fdun,Vf € C[0,1]. Thus ¢ is a positive lin-
ear functional on C]0,1] and Riesz Representation theorem says that there
is a nice positive measure p on [0,1] such that ¢(f) = [ fdu. Note fur-
ther u([0,1]) = ¢(1) = lime,, (1) = limp,, ([0,1]) € [0,1] where 1 denotes
the constant function 1 on [0,1] so that u is a probability measure. Thus
[ fdpn, — [ fdp. Hence the proof.
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5. Let X be a Banach space and A € B(X). For t > 0, define S; := exp(tA). Show
that S; € B(X), St,+t, = S, © St,, and for all z € X %iII(l) Six = x.
—

Solution:

The following Lemma will be useful.

Lemma 0.1 Let A be a unital Banach algebra. If a € A and f : R — A is
differentiable, f(0) =1, f'(t) = af(t), f(t) commutes with a Vt € R, then f(t) = e'.

Proof: Let g1,92 : R — A be differentiable maps such that ¢;(0) = 1,¢.(t) =
ag;(t),i = 1,2 and if g;(t) commutes with a for all ¢, then the map h: R — A given
by h(t) = g1(t)g2(—t) is differentiable with zero derivative and so h is constant (for
if 7 € A*, then the map from R — C given by t — 7(h(t)) is differentiable with
zero derivative so that 7(h(t)) = 7(h(0)),Vt € R and since 7 € A* is arbitrary, we
have that h is constant). So, h(t) = h(0) = 1 implies g;(t)go(—t) = 1. If we take
g1(t) = ga(t) = €', then we have e'e™' = 1. With g; = f, g2(t) = €'* we see that
f(®)e " =1 and therefore, f(t) = e™. O

Take t1,t5 > 0. Set X = t;A,Y = t5A. Then X,Y commute and if we set f(t) =
eXe then f(0) =1, f/(t) = Xe¥eV +eXVeY = (X +Y)eXe” = (X +Y)f(1).
Hence by an appeal to the preceeding Lemma we have that f(t) = !X+Y) vt € R,
so, in particular,e(itt2)4 = XY — XV — ghideled Thys S, o, = S, S,,. Hence
the proof.

Note for ¢ sufficiently small (t < 1) we have that ||Sy(z) — x| < ||=|||t|(el] — 1)
which goes to 0 as t — 0. U

6. Let X =1y and @ = (@) € loo. Then show that the diagonal operator A, : Iy — o,
defined as A,z := (apx,) for x = (z,) € ly is compact iff o, — 0.

Solution: Suppose that A, is compact. Note A,(e,) = a,e, so that each a,, is
an eigenvalue of A, where e, denotes the sequence whose n-th term is 1 and all
other terms are zero. Therefore a,, — 0. On the otherhand if «,, — 0, then if

we define T, (z) = (aqz1, agxs, -+, @yxy,0,0,---) then we see that each T, is of
finite rank (hence, compact) and note that || T, (2) — Aa(2)[|> = >, 11 [m@m|* <

Supm>ni1|am|?||z]|? from which it immediately follows that T;, — A, and hence A,
is compact.

7. Let H := L?[0,1], (with Lebesgue measure). For ¢ € L>, let My : H — H. Show
that [[M|] = [|¢]]-

Solution: Note that for any f € H, [ |¢f]*dp < ||||% || f|3 so that My(f) € H
and it also follows that ||My|| < [|¢||e. If possible let ||My|| < ||¢|l. Then there is
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an € > 0 such that [[My|| < ||¢]lc — €. Thus there is a compact set K of [0,1] ( by
regularity of p) such that u(K) > 0 and |¢p(z)| > || M| + €, Vo € K. Observe that
IMIP(K) 2> Myl = f 1ol > (1M + €)p(E) from which it follows
that [[My| > [[My|| + €, a contradiction. Thus, ||My| = ||¢||cc-

O

. Let H := L?[0,1], (with Lebesgue measure), A : H — H, Af(x) := z*f(x). Then
A>0,A€ B(H).

a) Show that A has no cyclic vector in H. (Hint: Given f # 0 € H, construct
g=9(f)#0¢€ H, such that < g, A"f >y=0¥n > 1.)

b) Let H, and H, be the closed subspaces of H consisting respectively of the even
and odd functions in H. Show that H, and H, are orthogonal subspaces of H and
each is a cyclic subspace for A.

Solution:

(a) Given f # 0 in H. Define g(z) = f(—x)sgn(z),z € [-1,1]. Note 0 # g € H
and also note A™(f)(z) = 2*" f(x). Now

1

A9 = / 22 f(2) f(~2)sgn(z)dy

-1

= [ s [ =0

-1

which shows that f is not a cyclic vector for A in H.

(b) Given f € He,g € Ho. < frg>= [, fodu = [°, fodut [y fadu = — [y fadu+
fol fgdp = 0. Thus H, and H, are orthogonal subspaces of H.
Consider the function f =1 € H,. Since A"(f)(x) = x®", we see that {A"f} is

the set of all monomials of even degree i.e equals the set {1, 2% 2%, ---}, which
is a total set in H, so that H,. is A-cyclic subspace of H with f as a cyclic
vector. Similarly one can see that the function f(z) = x serves as a cyclic
vector for H,. Hence the proof.

O



