
07-05-2012 Solution
Functional Analysis - M.Math. I Year - Final Exam

1. Let (H,< ., . >) be a Hilbert space. Let A ∈ B(H). Prove that:

a) KerA∗ = (rangeA)⊥.

b) Ker(A∗A) = KerA.

c) If dim H < ∞, then A,A∗A,
√
A∗A have the same rank, i.e., the dimensions

of their ranges are the same.

d) (KerA)⊥ = the closure of range A∗ = rangeA∗.

Solution:

(a) Note ξ ∈ KerA∗ ⇔ A∗ξ = 0 ⇔< A∗ξ, η >= 0,∀η ∈ H ⇔< ξ,Aη >= 0,∀η ∈
H ⇔ ξ ∈ (ranA)⊥.

(b) Obviously KerA ⊆ KerA∗A. By 1(a), KerA∗A = Ran(A∗A)⊥. Thus, ξ ∈
KerA∗A implies < ξ,A∗Aη >= 0, ∀η ∈ H from which it follows that Aξ = 0
so that ξ ∈ KerA.

(c) Use Rank-Nullity theorem to conclude that dim(KerA∗A) + dim(RanA∗A) =
dim(H) = dim(KerA) + dim(RanA) so that rank of A∗A equals rank of A.

Let T =
√
A∗A. Again note that KerT ⊆ KerA∗A obviously. Now ξ ∈

KerA∗A⇒ T 2ξ = 0⇒< T 2ξ, ξ >=< Tξ, Tξ >= 0 and hence ξ ∈ KerT .

(d) For any ξ ∈ H, η ∈ KerA,< A∗ξ, η >= 0 so that RanA∗ ⊆ KerA⊥ which in
turn implies RanA∗ ⊆ KerA⊥. The reverse inclusion follows from 1(a).

�

2. Let (H,< ., . >) be a Hilbert space. Let A ∈ B(H).

a) Show that if A is normal then spr(A) = ‖A‖.
b) If A is self adjoint and An = 0 for some n ≥ 1, then A = 0.

Solution:

(a) If a is a normal element of a unital C∗-algebra A, then recall that there is a
unique unital ∗-isomorphism φ : C(Spr(a))→ A (known as functional calculus
at a) such that φ(z) = a where z is the inclusion map of Spr(a) in C and
moreover, φ is isometric and image of φ is the C∗-subalgebra of A generated
by 1 and a. From this we immediately conclude that if A ∈ B(H) is normal,
then ‖A‖ = Spr(A).
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(b) ‖A‖ = spr(A) = limm→∞‖Am‖ = 0.

�

3. Show that a Banach space X is reflexive iff its dual X∗ is reflexive.

Solution: See Functional Analysis, S. Kesavan corollary 5.3.3, page-146 �

4. a) Show that every Banach space X is isometrically isomorphic to a closed linear
subspace of C(E) where E is a compact Hausdorff space.

b) Let X = C[0, 1],(continuous real valued functions on [0, 1]) with the uni-
form norm ‖x‖ = sup0≤t≤1|x(t)|. Its dual X∗ may be identified as X∗ ∼=
NBV [0, 1] := {g : [0, 1] → R, g(0) = 0, g of bounded variation and right
continuous on [0, 1]}, with the total variation norm. Show that if g ∈ X∗ and
g(x) ≥ 0, x ∈ X, then g is given by a non-decreasing function on [0, 1].

c) If {µn : n ≥ 1} is a sequence of probability measures on [0, 1], show tht there-
exists a subsequence {nk} ⊂ {n} and a probability measure µ on [0, 1] such
that ∫ 1

0

f(t)dµnk
(t) −→

∫ 1

0

f(t)dµ(t),∀f ∈ C[0, 1].

Solution:

(a) Suppose that X is a Banach space and let E = (X∗)1, the closed unit ball of X∗

and by the Banach-Alaoglu theorem, E is compact in weak∗ topology. Define
a map β : X −→ C(E) by β(a)(f) = f(a) for a ∈ X, f ∈ E. Linearity of β
is obvious. Further for a ∈ X, ‖β(a)‖∞ = Supf∈E|β(a)(f)| = Supf∈E|f(a)| =
‖a‖, showing that β is isometry. Hence the proof.

(b) See B.V.Limaye Functional Analysis, Theorem 14.5, page-245.

(c) For each n, define φn : C[0, 1] → C by φn(f) =
∫
fdµn. Note that |φn(f)| ≤

‖f‖∞ so that each φn ∈ C[0, 1]∗. By an appeal to the uniform bounded-
ness principle we see that {φn} is a bounded sequence in C[0, 1]∗. We re-
call that every bounded sequence in the dual of a seperable Banach space
has a weak∗ convergent subsequence. Consequently, {φn} has a weak∗ con-
vergent subsequence, say, {φnk

} and let φnk
→ φ ∈ C[0, 1]∗ in weak∗ topol-

ogy. Thus φ(f) = limn→∞
∫
fdµn,∀f ∈ C[0, 1]. Thus φ is a positive lin-

ear functional on C[0, 1] and Riesz Representation theorem says that there
is a nice positive measure µ on [0, 1] such that φ(f) =

∫
fdµ. Note fur-

ther µ([0, 1]) = φ(1) = limφnk
(1) = limµnk

([0, 1]) ∈ [0, 1] where 1 denotes
the constant function 1 on [0, 1] so that µ is a probability measure. Thus∫
fdµnk

→
∫
fdµ. Hence the proof.
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5. Let X be a Banach space and A ∈ B(X). For t ≥ 0, define St := exp(tA). Show
that St ∈ B(X), St1+t2 = St1 ◦ St2 , and for all x ∈ X, lim

t→0
Stx = x.

Solution:

The following Lemma will be useful.

Lemma 0.1 Let A be a unital Banach algebra. If a ∈ A and f : R → A is
differentiable, f(0) = 1, f ′(t) = af(t), f(t) commutes with a ∀t ∈ R, then f(t) = eta.

Proof: Let g1, g2 : R → A be differentiable maps such that gi(0) = 1, g′i(t) =
agi(t), i = 1, 2 and if g1(t) commutes with a for all t, then the map h : R→ A given
by h(t) = g1(t)g2(−t) is differentiable with zero derivative and so h is constant (for
if τ ∈ A∗, then the map from R → C given by t → τ(h(t)) is differentiable with
zero derivative so that τ(h(t)) = τ(h(0)),∀t ∈ R and since τ ∈ A∗ is arbitrary, we
have that h is constant). So, h(t) = h(0) = 1 implies g1(t)g2(−t) = 1. If we take
g1(t) = g2(t) = eta, then we have etae−ta = 1. With g1 = f, g2(t) = eta we see that
f(t)e−ta = 1 and therefore, f(t) = eta. �

Take t1, t2 ≥ 0. Set X = t1A, Y = t2A. Then X, Y commute and if we set f(t) =
etXetY , then f(0) = 1, f ′(t) = XetXetY + etXY etY = (X + Y )etXetY = (X + Y )f(t).
Hence by an appeal to the preceeding Lemma we have that f(t) = et(X+Y ),∀t ∈ R,
so, in particular,e(t1+t2)A = eX+Y = eXeY = et1Aet2A. Thus, St1+t2 = St1St2 . Hence
the proof.

Note for t sufficiently small (t < 1) we have that ‖St(x) − x‖ ≤ ‖x‖|t|(e‖A‖ − 1)
which goes to 0 as t→ 0. �

6. Let X = l2 and α = (αn) ∈ l∞. Then show that the diagonal operator Aα : l2 → l2,
defined as Aαx := (αnxn) for x = (xn) ∈ l2 is compact iff αn → 0.

Solution: Suppose that Aα is compact. Note Aα(en) = αnen so that each αn is
an eigenvalue of Aα where en denotes the sequence whose n-th term is 1 and all
other terms are zero. Therefore αn → 0. On the otherhand if αn → 0, then if
we define Tn(x) = (α1x1, α2x2, · · · , αnxn, 0, 0, · · · ) then we see that each Tn is of
finite rank (hence, compact) and note that ‖Tn(x)−Aα(x)‖2 =

∑∞
m=n+1 |αmxm|2 ≤

Supm≥n+1|αm|2‖x‖2 from which it immediately follows that Tn → Aα and hence Aα
is compact.

7. Let H := L2[0, 1], (with Lebesgue measure). For φ ∈ L∞, let Mφ : H → H. Show
that ||Mφ|| = ||φ||∞.

Solution: Note that for any f ∈ H,
∫
|φf |2dµ ≤ ‖φ‖2∞‖f‖22 so that Mφ(f) ∈ H

and it also follows that ‖Mφ‖ ≤ ‖φ‖∞. If possible let ‖Mφ‖ < ‖φ‖∞. Then there is
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an ε > 0 such that ‖Mφ‖ < ‖φ‖∞ − ε. Thus there is a compact set K of [0, 1] ( by
regularity of µ) such that µ(K) > 0 and |φ(x)| > ‖Mφ‖ + ε,∀x ∈ K. Observe that
‖Mφ‖2µ(K) ≥ ‖Mφ(χK)‖2 =

∫
|φχK |2dµ ≥ (‖Mφ‖+ ε)2µ(K) from which it follows

that ‖Mφ‖ ≥ ‖Mφ‖+ ε, a contradiction. Thus, ‖Mφ‖ = ‖φ‖∞.

�

8. Let H := L2[0, 1], (with Lebesgue measure), A : H → H,Af(x) := x2f(x). Then
A ≥ 0, A ∈ B(H).

a) Show that A has no cyclic vector in H. (Hint: Given f 6= 0 ∈ H, construct
g = g(f) 6= 0 ∈ H, such that < g,Anf >H= 0∀n ≥ 1.)

b) Let He and Ho be the closed subspaces of H consisting respectively of the even
and odd functions in H. Show that He and Ho are orthogonal subspaces of H and
each is a cyclic subspace for A.

Solution:

(a) Given f 6= 0 in H. Define g(x) = f(−x)sgn(x), x ∈ [−1, 1]. Note 0 6= g ∈ H
and also note An(f)(x) = x2nf(x). Now

< Anf, g > =

∫ 1

−1
x2nf(x)f(−x)sgn(x)dµ

= −
∫ 0

−1
x2nf(x)f(−x)dµ+

∫ 1

0

x2nf(x)f(−x)dµ = 0

which shows that f is not a cyclic vector for A in H.

(b) Given f ∈ He, g ∈ Ho, < f, g >=
∫ 1

−1 fḡdµ =
∫ 0

−1 fḡdµ+
∫ 1

0
fḡdµ = −

∫ 1

0
fḡdµ+∫ 1

0
fḡdµ = 0. Thus He and Ho are orthogonal subspaces of H.

Consider the function f = 1 ∈ He. Since An(f)(x) = x2n, we see that {Anf} is
the set of all monomials of even degree i.e equals the set {1, x2, x4, · · · }, which
is a total set in He so that He is A-cyclic subspace of H with f as a cyclic
vector. Similarly one can see that the function f(x) = x serves as a cyclic
vector for Ho. Hence the proof.

�

4


